

Characterizing Applications on the Cray MTA-2
Multithreading Architecture

Sadaf R. Alam Richard F. Barrett Collin B. McCurdy
 Philip C. Roth Jeffrey S. Vetter

Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA 37831

{alamsr,rbarrett,cmccurdy,rothpc,vetter}@ornl.gov

ORNL is currently evaluating several strategic applications on the Cray MTA-2 platform to better understand

massively parallel multithreading as an architectural choice beyond scalar, vector, and multicore architectures. In
this paper, we describe our initial experiences with several applications including molecular dynamics, finite
difference methods, a fast multipole method and a discrete event simulation engine.

1 Introduction

Several vendors of high-end computing (HEC)
systems have announced or deployed systems that
include processing devices from a number of
computing paradigms, including microprocessors,
vector processors, multi-threaded processors, and
other hardware accelerators like FPGAs. Dramatic
speedups are possible for applications whose parts
are mapped to appropriate compute devices in
multi-paradigm systems. For instance, Cray has
recently announced their Adaptive Supercomputing
strategy that will incorporate microprocessors,
vector processors, multi-threaded processors, and
hardware accelerators into a single HEC system.

To better understand massively parallel multi-
threading as an architectural choice compared to
scalar, vector, and multi-core processors, Oak Ridge
National Laboratory is evaluating several strategic
applications on Cray’s current multi-threaded
architecture platform, the Cray MTA-2 [4, 13]. The
MTA-2 takes a non-traditional approach to
addressing the ever-widening gap between the rate
at which processors can execute instructions and
the rate at which data can be transferred between
processors and memory.

Similar to the approach of overlapping
communication with computation in a message
passing parallel program, clever instruction
scheduling can be used to hide some of the memory
access latency with computation. For instance, a
compiler can arrange the instructions of a program
so that the instruction that loads data into a
processor register is executed as far in advance as

possible before the instruction that uses the
register’s value. However, modern processors are
able to execute tens or even hundreds of
instructions in the time it takes to load one data
word from memory into a processor register, and
instruction scheduling alone is insufficient to hide
the time required to access data in main memory.

The conventional approach for dealing with the
memory access latency problem is to insert data
caches between the processor and main memory
that contain data that is likely to be accessed either
because it has recently been accessed, or because it
is near some data that has been recently accessed.
Because the time required to access data from a
cache is less than that to access data from main
memory, instruction scheduling can be effective in
hiding the latency of accesses that are satisfied
from the data cache(s). Unfortunately, data caches
are small compared to the size of main memory,
and sometimes accesses must be satisfied from
main memory (a “cache miss”). Algorithms for
solving certain types of important problems such as
graph theory problems tend to produce memory
access streams that cause a large number of cache
misses, resulting in poor performance on systems
with traditional cache-based designs.

The MTA-2 takes a non-conventional approach
to addressing the gap between processor and
memory access performance. Instead of data caches
to reduce the latency of some memory accesses, the
MTA-2 uses a high degree of thread-level
concurrency to hide memory access latency. If there
are enough threads available to an MTA-2

 - 2 -

processor, the time required to satisfy the memory
accesses for any individual thread running on that
processor is completely hidden by the execution of
instructions from other threads.

Over the past decade, there have been several
studies investigating the performance of this
approach as implemented in the Cray MTA-2 and
its predecessors [2, 3, 9, 10, 19, 20, 22]. The
primary question we are investigating is whether
some types of algorithms require multithreading to
demonstrate substantial performance relative to
systems with more conventional processors. Also,
unlike the previous studies, we are also
investigating how best to map an application to
systems containing both conventional processing
elements and multi-threaded processors when only
some of the application kernels require the multi-
threaded processors.

1.1 Strong versus Weak Scaling
Parallel computing was developed with the end

goal of solving computational problems faster by
applying more processing power. Realized speed up
is bounded by the amount of parallelism that can
be captured computationally, analytically described
by Amdahl's Law [5] as

S =
s+ p

s+
p
N

!

"

$

%
&

=
1

s+
p
N

!

"

$

%
&

for s and p defined to be the serial and parallel
portions, respectively, and N parallel processes. The
implication is that a fundamental bound on
performance is inherent for any given problem. The
ability of a computer to solve such problems given a
range of process counts is called strong scaling. The
user is probably looking to discover some "sweet
spot" where the time to solution is balanced with
some resource management requirement.

However, some scientists realized another use
for the processing power that was being made
available to them. They understood that for
problems that they could not fully capture in the
available computing resource, they could instead
increase the size of their problem in proportion to
the number of processors and amount of memory.
While not fully solving the ultimate problems of
interest, insight can be gained, which at the least
can be used to help clarify the issues that must be
addressed once the full experiment can be executed.

This so-called weak scaling was first described
analytically by Gustafson [16] as

()
()

sNN

pNs

ps

pNs
S

)1(!+=

+=

+

+
=

for s and p defined to be the serial and parallel
portions, respectively, and N parallel processes.
Good scaling here means that the time to solution
remains fairly constant as the size of the problem is
increased.

Strong scaling problems are characterized by a
change in problem definition, or complexity, as the
problem size changes. The Community Climate
Systems Model (CCSM) [7] is a well-known example
of a strong scaling model. The NAS Benchmarks [6],
derived from fluid dynamics experiments, define
fixed problem sets.

Weak scaling problems are characterized by an
improvement in problem definition as the problem
size increases. The radiation-hydrodynamics
application SAGE [18] is a well-known example of a
weak-scaling application code. The LINPACK
benchmark creates a linear system of dimension
limited only by the available memory.

Large scale parallel processing architectures,
while often good at weak scaling, are also often not
very good at strong scaling. The MTA-2 provides a
strong exception to this, a claim supported
throughout this paper.

2 Cray MTA-2 Overview
In this section, we present an overview of the

Cray MTA-2 system organization, compute node
processor, and front-end system. We conclude the
section by comparing MTA-2 with Eldorado, Cray’s
forthcoming system with multi-threaded
architecture processors. We leave a detailed
description of the system’s programming
environment for Section 3.

2.1 System Organization
The MTA-2 consists of a collection of compute

nodes connected by an interconnection network. The
topology of the MTA-2 interconnection network is
described in the literature as a “modified Cayley”
topology [14] and as a 3D torus that is missing
some links [4].

Unlike most modern parallel systems, memory
is not collocated with the compute nodes. Instead,
memory is located in separate memory units

 - 3 -

attached directly to the interconnection network. All
memory requests traverse the network from the
originating processor across the network to a
memory unit, and (in the case of memory loads)
back to the originating processor. Because all
memory requests traverse the interconnection
network, the time required to access memory is
nearly no matter which processor originates the
request and which memory unit satisfies it. To
alleviate contention caused by the spatial and
temporal locality of memory accesses with some
algorithms (e.g., sequential access to an array),
virtual addresses are hashed to memory units so
that sequential addresses in a process’ address
space do not refer to locations in the same memory
unit, freeing the compiler from the need for careful
data placement and memory access instruction
scheduling.

2.2 Processor
The MTA-2 processor tolerates memory access

latency by supporting many concurrent threads of
execution. The processor uses 64-bit VLIW
instructions. Each instruction can contain one fused
multiply-add instruction, one add or control
operation, and one memory load or store operation.
To be able to hide the memory access latency of the
worst-case scenario in which a thread issues one
memory access per instruction), the MTA-2
processor supports 128 concurrent instruction
streams and can switch between streams on each
clock cycle. To enable such rapid switching between
streams, the processor maintains a complete thread
execution context for each of its 128 streams.

Although the MTA-2 processor does not use a
data cache, it does include an instruction stream
shared between all of its hardware streams.

2.3 Front-end System
Like many high-end computing systems, the

MTA-2 uses a separate front-end system. Users log
in to the front-end system for software development
and to run programs on the MTA-2 compute nodes.
In contrast to the MTA-2 compute nodes, the
system’s front-end system uses a SPARC processor
and runs the Solaris version of UNIX from Sun
Microsystems.

2.4 Cray Eldorado
The MTA-2 is no longer an active product in the

Cray product line. However, multi-threaded
processors seem likely to be a feature of future
systems from Cray. Multithreaded processors are
explicitly mentioned in the company’s Adaptive

Supercomputing strategy overview, and are the
primary processor in the forthcoming Eldorado
system [14]. Although Eldorado uses multithreaded
processors similar to the MTA-2, there are several
important differences. Unlike the MTA-2, Eldorado
will use a complete 3D mesh/torus network similar
to that used in the Cray XT3 parallel processing
system, and each compute processor will have an
associated local memory. Consequently, Eldorado
will not have the MTA-2’s nearly uniform memory
access latency, so data placement and access
locality will be an important consideration when
programming Eldorado. Eldorado’s multithreaded
processors will operate at 500 MHz, over twice the
clock rate of the MTA-2 processor. Finally, the
Eldorado design will allow systems with up to 8192
processors, whereas the largest possible MTA-2
system contains only 256 processors.

3 Programming the Cray MTA-2
Because of its use on multi-threading instead of

data memory caches to address the gap between
processor speed and memory access latency, the
Cray MTA-2 platform is significantly different from
other modern architectures. These differences are
reflected in the MTA-2 programming model and,
consequently, its software development
environment.

3.1 Programming Model
The key to obtaining high performance on the

MTA-2 is to keep its processors saturated, so that
each processor always has a thread whose next
instruction can be executed. If the collection of
threads presented to a given processor is not large
enough to ensure this condition (where “large
enough” depends on the timing and frequency of
memory accesses performed by the threads in the
collection) the processor will be under-utilized. For a
given program, the size of this thread collection
depends on how well the program exposes its
parallelism to the system. Because the MTA-2 is a
shared memory system, its programming model
involves collections of threads that synchronize their
access to shared data in memory, rather than
separate address spaces communicating via
messages as in the MPI programming model.

In the high-level language source code of an
MTA-2 program, parallelism can be expressed both
implicitly and explicitly [12]. Implicit parallelism is
expressed using the source language’s loop
constructs, such as a C for loop or Fortran DO loop.
The MTA-2 compilers automatically parallelize the

 - 4 -

body of such loops so that a collection of threads
executes the loop, with each thread executing some
of the loop iterations. Ideally, this collection of
threads will be interleaved on one or more MTA-2
processors so that the loop iterations are executed
in parallel.

There are some restrictions on the types of loops
the MTA-2 compilers can parallelize automatically,
and sometimes compiler directives must be used to
indicate that a given loop can be parallelized. For
instance, the number of loop iterations must be
determinable before the loop executes, and the loop
must not contain complex data dependencies
between loop iterations (though the compilers can
handle linear recurrences). Directives may be
needed to indicate that a given loop can be
parallelized, especially for C and C++ programs
where the compiler cannot tell whether two pointer
variables used within a loop body do not actually
point at the same memory location.

In addition to implicit expressions of
parallelism in MTA-2 programs, parallelism can be
expressed explicitly using futures. A future is best
suited for expressing task parallelism and
recursion, though it could be used for data
parallelism. A future is similar to a traditional
high-level language function, in that it contains a
body comprised of a sequence of statements, can
accept input parameters, and can return a result.
Unlike a traditional function, executing a future
causes a new thread to be spawned; the body of the
future executes in the context of this new thread.
Because the new thread could execute concurrently
with the original thread, futures provide a
convenient mechanism for the original thread to
synchronize with the future. If the future produces a
result, it is assigned to a future variable with the
same name as the future. The future variable must
be a simple type like integer or double, and must be
declared using the future keyword before the future
itself is declared. Once the future has begun
executing, the full/empty bit of the associated future
variable is marked empty. If the original thread (or
any other thread) accesses the future variable while
it is marked empty, the accessing thread will block
until the variable is marked full. When the future
executes its return statement, the value it returns
is assigned to the future variable and the variable
is marked full, allowing any threads that were
blocked on the future variable to resume.

Whenever multiple threads execute concurrently
and access the same location in memory, thread
synchronization is usually required to ensure correct
operation. For example, if a thread updates a

memory location by writing a value to it, and
another thread wants to obtain that updated value
by reading the memory location, the two threads
must synchronize so that the reading thread does
not access the location until the writing thread has
finished updating the value. The MTA-2 full/empty
bits provide a natural mechanism for synchronizing
threads.

A future variable is one approach for using the
MTA-2 full/empty bits for synchronization between
a thread executing the future that will produce the
future variable’s value and other threads that
consume the value. Future variables can also be
declared independent of a future and used for
synchronization. When used in this manner, a
collection of MTA-2 generic functions are used in
conjunction with simple variable reads and writes
for synchronizing access to the future variable’s
value. MTA-2 generic functions explicitly and
atomically manipulate a future variable’s value and
its associated full/empty bit. For example, the
readfe() generic function tests the full/empty bit
for a memory location, and if the full/empty bit is
marked empty, the function blocks till some other
thread marks it as full. Then the function reads the
memory location, sets the full/empty bit to empty,
and returns the location’s value. A synchronization
variable (denoted using the sync qualifier in the
variable’s declaration) can be used for
synchronization like a future variable without a
future, but simple read and write accesses
performed on synchronization variables have
slightly different semantics than simple reads and
writes to a future variable.

3.2 Programming Environment
The MTA-2 provides a traditional programming

environment that includes compilers, a linker, build
management software (i.e., a make command), and
a debugger in addition to the analysis tools
described in Section 3.1. The development
environment is hosted on the MTA-2 login system,
called the “Programming Environment server” or in
the Cray documentation [11]. This login node
contains SPARC processors and runs Solaris, a
version of UNIX from Sun Microsystems.
Widespread support for Solaris in the open source
community makes it relatively easy to augment the
default MTA-2 development environment with tools
that operate on source files or control the build
system (e.g., the Eclipse Integrated Development
Environment). However, because the processor and
operating system differ between the MTA-2

 - 5 -

compute nodes and its login node and because the
MTA-2 compute node processor is not widely
supported in the open source community, it is
significantly more difficult to deploy open source
packages that operate on MTA-2 object files or
executables.

The MTA-2 development environment includes
C, C++, and Fortran compilers. The Fortran
compiler accepts both Fortran 77 and Fortran 90
programs, though support for some Fortran 90
features (e.g., modules) lacks maturity. According to
the MTA-2 Programmer’s Guide [12], the C compiler
accepts both programs that adhere to the 1989
ANSI C language standard and the traditional
Kernighan and Ritchie syntax. The C++ compiler
accepts programs that comply with a draft of the
ISO 14882 C++ standard specification; it is unclear
how this draft differs from the final specification
approved in 1998. These compilers share a
language-independent back-end.

The MTA-2 development environment also
includes a debugger called mdb, based on the GNU
gdb debugger, but extended to support parallel
programs and the MTA-2 processor architecture.

As noted above, the key to obtaining good
performance on the MTA-2 is to ensure that each
processor always has a thread whose next
instruction can be executed (i.e., is not blocked
waiting for a memory access to complete), and that
one reason that threads are created is for executing
the iterations of a loop. However, because program
loops are an implicit representation of parallelism,
it is difficult for a non-expert to determine whether
the MTA-2 compilers will automatically parallelize
a loop, and if not, why. To provide insight into the
compiler’s automatic parallelization, the MTA-2
provides a compiler analysis tool called canal that
produces an annotated program listing indicating
which program loops have been parallelized, which
haven’t, and why. The canal tool also reports the
compiler’s estimate of how much parallelism has
been exposed for each loop, in terms of the number
of processor streams that will be requested when
the loop’s threads are executed.

In some cases, the compiler under-estimates the
number of streams required to keep the processor
saturated when executing a given loop. A program’s
run time on the MTA-2 is fairly predictable if the
processors are saturated, so situations where the
compiler under-estimated the stream requirements
are indicated when the program’s run time greatly
exceeds the predicted run time. When performance
falls short of expectations (or when no prediction

has been made to establish the expectation), two
MTA-2 development environment tools can provide
insight into the program’s dynamic behavior. The
BPROF tool is a traditional basic block profiler that
supports both a graphical user interface and a text-
only report mode. BPROF is useful for drawing the
user’s attention to portions of the code that took a
long time to execute, but does not necessarily
provide insight into why each portion took as long
as it did. The traceview tool does provide that
insight by showing how well the program used the
hardware streams available to it during its
execution. Using a program trace produced when
the program was run, the traceview tool presents
a graphical display that shows a timeline of the
program’s execution. The timeline shows how many
hardware streams were allocated to the program at
each point during its execution, and how many
hardware streams were actually in use. A large gap
between the two indicates a portion of the code
(e.g., a loop) that did not make efficient use of the
processors allocated to it. With a click on the
timeline display, traceview can provide detailed
information about which code was executing at any
given time during the program run, including a
listing of the program source code. If the compiler
under-estimated the number of streams required to
saturate the available processors for a loop, the
user can use information from traceview to
estimate how many additional streams to request
for the loop, and add a directive to the program
source to indicate the number of streams the
compiler should request.

4 Applications
We investigated applications and application

kernels from several problem domains on the Cray
MTA-2. In this section, we detail our evaluation of
the MTA-2 for molecular dynamics applications, a
fast multipole method, finite difference methods,
and a discrete event simulation engine.

4.1 Molecular Dynamics
Molecular Dynamics (MD) is a computer

simulation technique where the time evolution of a
set of interacting atoms is followed by integrating
the equations of motion. In the Newtonian
interpretation of dynamics, the translational motion
of a molecule is caused by force exerted by some
external agent. The motion and the applied force
are explicitly related through Newton’s second law:

iii
amF = .

 - 6 -

i
m is the atom’s mass,

2

2

dt

rd
a

i

i
= is its acceleration, and

i
F is the force acting upon it due to the interactions

with other atoms. MD techniques are extensively
used in many areas of scientific simulations
including biology, chemistry and materials. Atoms
in an MD simulation are expected to behave in a
way atoms in a real substance would do. For
instance, in a MD computer simulation, atoms
within a simulated system will move and bump
into each other, wander around if the system is
fluid, oscillating in waves with its neighbors, in
some cases evaporate away from the system if there
is a free surface.

MD simulations are computationally very
expensive. Typically the computational cost is
proportional to N2, where N is the number of atoms
in the system. In order to reduce the computational
cost, techniques such as cutoff limit are used. It is
assumed that atoms within a cutoff limit contribute
to the force and energy calculations on an atom. As
a result, the MD simulations do not exhibit a cache
friendly memory access pattern. An atom and its
neighbors continuously move during a simulation
run, and an atom does not interact with a fix pair of
atoms. Since, usually the positions of atoms are
stored in arrays, multiple accesses to the position
arrays in a random manner is required to calculate
the cutoff distance, and subsequently to perform
force calculations.

The MTA-2 architecture provides an optimal
mapping to the MD calculations because of its
uniform memory latency architecture. In other
words, there is no penalty for accessing atoms
outside the cutoff limit or the cache boundaries as
in the microprocessor-based systems.

Our MD kernel contains two important parts of
an MD calculation: force evaluation and integration.
Calculation of forces between bonded atoms is
straightforward and less computationally intensive
as there are only a very small numbers of bonded
interactions as compared to the non-bonded
interactions. The effect of non-bonded interactions
are modeled by a 6—12 Lennard-Jones (LJ)

potential model:
!
!
"

#

$
$
%

&
'
(
)

*
+
,-'

(
)

*
+
,

=

612

4)(
rr

rV
..

/ .

LJ potential combines large distance attractive
forces (r-6 term) and short distance repulsive force (r-

12 term) between two atoms. The integration in our

kernel is implemented using the velocity Verlet
algorithm, which calculates the trajectories of atoms
from the forces. The Verlet algorithm uses positions
and acceleration at time t and positions from time

tt !+ to calculate new positions at time tt !+ . The
pseudo code for our implementation is given in
Figure 1. Steps are repeated for n simulation time
steps. n depends on the time-scale of the simulated
system and the value of δt.

Figure 1: MD kernel implemented on MTA-2 (velocity
Verlet method)

The most time consuming part is step 2, which

is parallelized by the MTA compiler after a simple
modification to a reduction operation. Rest of the
kernel is parallelized by the MTA compiler without
any code modification. We ran two tests using the
MD kernel. First, in the strong scaling mode where
the problem size is fixed and the number of MTA
processors are increased. Second, we keep the
problem size per processor fixed by increasing the
number of atoms and the number of MTA
processors by a factor of two. Results of the
experiments are shown in Figure 2 and Figure 3
respectively. In the strong scaling mode, the results
are consistent with parallel implementations of the
MD kernel, which typically does not scale beyond 8
or 16 processors on an SMP cluster.

0

20

40

60

80

100

120

1 2 4 8 16 32

Number of processors

R
u

n
ti

m
e
/i
n

te
rv

a
l
(s

e
c
)

32000 atoms

16000 atoms

8000 atoms

Figure 2: MD simulation in strong scaling mode

The weak scaling mode experiments on the

MTA-2 system result in relatively higher

1. advance velocities
2. calculate potential energy and forces

for i=1 to N atoms
 for j=1 to N-1 atoms
 if(i & j in cutoff limits)
 compute force

3. complete velocities update
4. calculate new kinetic and total energies

 - 7 -

performance ratios as compared to microprocessor
based systems. Note that the computation cost
increase by N*(average number of atoms in cutoff
limit), therefore, the simulation time is not constant
as expected in the weak scaling mode. On parallel
systems, the inter-processor communication cost is
proportional to the number of atoms, therefore, the
performance ratios in the weak scaling mode are
even lower than the MTA-2 system. As shown in
Figure 3, the runtime cost on a single
microprocessor system increases rapidly by
increasing the number of atoms in an MD
simulation.

Number of processor

0

5

10

15

20

25

1024 2048 4096 8192 16384 32768

Number of processors

R
u

n
ti

m
e
/i
n

te
rv

a
l
(s

e
c
)

1 2 4 8 16 32 uproc

Figure 3: MD simulation with fix workload per

processor

4.2 Finite difference solution of an elliptic
PDE

A broad range of physical phenomena in science
and engineering can be described mathematically
using partial differential equations. Determining
the solution of these equations on computers is
commonly accomplished by mapping the continuous
equation to a discrete representation. One such
technique is the finite differencing method, letting
us solve the equation using a difference stencil,
updating the solution at each point as a function of
the point and its neighbors, given some discrete
time step. Notationally, this is represented by

5

1,,1,,11,1

,

t

ji

t

ji

t

ji

t

ji

t

jit

ji

uuuuu
u

++!!+
++++

= ,

for i, j = 1, …, n, for time step t. The Fortran
implementation of the above equation is shown in
Figure 4.

The strong scaling performance of the 5-point

stencil is shown in Figure 5. Our experiments show
that regardless of the size of the grid (as long as
each processor has a reasonable amount of work),
the ability of the MTA-2 to compute the solution
scales almost linearly. Further, performance almost
perfectly tracks that predicted by the MTA-2 Canal
performance tool. That is, for the 5-point stencil
loop, Canal shows that five floating point
instructions will be executed with eight memory
references per loop iteration, for a predicted
performance of (5/8)*220MFLOPS*numpes.

Figure 5: This graph shows the scaling performance of
the 5-point difference stencil executed on the MTA-2.
Whether operating on a 2,000 x 2,000 grid or a 10,000 x
10,000 grid, the performance is the same, staying within
90% of theoretical peak up to 40 processors.

4.3 Fast Multipole Method
The Adaptive Fast Multipole Method

(FMM) [15] approximates the solution to the O(n2)
n-body problem in O(n) time. The FMM is an
interesting candidate for the MTA because the
combination of its reliance on a tree data structure,
by definition a global object, and the adaptive
nature of the algorithm make it extremely

REAL :: GRID (M+2, N+2)
 ! Extra space for ghost boundaries.

DO J = 2, N+1
 DO I = 2, M+1
 GRID_NEW(I,J) = &

 GRID(I-1,J)+ &
 GRID(I,J-1)+GRID(I,J)+GRID(I,J+1)+ &

 GRID(I+1,J)) &
 * 0.2

 END DO
END DO
GRID_OLD = GRID_NEW

Figure 4: Fortran implementation of the 5-point
difference stencil. This Fortran code segment
implements a five point differencing scheme on an M x N
grid. Note the extra (ghost) space allocated for storing
the boundary condition.

 - 8 -

challenging to parallelize effectively on distributed
memory platforms. Keeping the ratio between
interaction computation and tree construction and
maintenance low is particularly challenging.

At a very high level the adaptive version of the
algorithm proceeds as follows:

• Insert particles into an adaptive oct-tree.
• Traverse tree to create interaction lists.
• Traverse tree from the leaves up to

propagate information summarizing
particles below.

• Traverse tree to compute interactions.
• Traverse tree from root down to propagate

potential to particles below.

A great deal of parallelism can be obtained simply
by parallelizing the tree traversals. Our initial
MTA implementation of the traversals used the
"future" construct to spawn new threads at each
internal node of the tree to explore succeeding
nodes. Since the upward and downward passes
both require synchronization between parents and
children, those traversals spawned "named futures"
whereby the spawner awaits the completion of
spawnees. Traversals that did not require
synchronization instead spawned "anonymous
futures", touching a synchronization variable to
ensure that the futures actually executed.

We found that the use of futures was quite
expensive and the insight that there was no need to
actually traverse the tree yielded a substantial
improvement in performance. For non-synchronized
traversals we simply parallelized a forall loop
over an array containing all the nodes. We used a
similar forall loop to implement synchronized
traversals, with the addition of read and write
operations to empty/full bits to ensure that parents
or children had already executed.

The only major algorithmic phase that required
a different parallelization strategy was the initial
tree construction phase. The obvious solution is to
parallelize the loop that inserts particles into the
tree. This approach, however, requires substantial
synchronization to ensure that new tree nodes are
uniquely created and properly linked to their
parents. Unnecessary locking of boxes at upper
levels of the tree in our initial implementation
serialized particle insertion: we locked each box,
and its parent, on the way down to the leaf in order
to ensure that when a thread found the leaf box in
which to insert a particle, the leaf was not
transformed into a parent box by another thread.

The improved version instead uses
synchronizing reads of parent boxes to get to a leaf,
and only then locks the leaf. A retry mechanism
ensures that if the leaf has been modified between
the last read and obtaining the lock, then the lock
is released and traversal to the new leaf continues.
The mechanism is similar to a cmpxchg atomic
instruction in which if the content of the targeted
memory location is not equal to the expected
content, then the exchange is not performed.

Figure 6: Weak (top, 64K particles/processor) and
strong (bottom, 64K total particles) scaling performance
of the initial FMM implementation.

Figure 6 demonstrates that while the
implementation described above does quite well
under weak scaling assumptions, it does not fare as
well when the number of particles is held constant
as processors are added.

The problem appears to be the result of the
coarse granularity of our parallelization strategy.

 - 9 -

As described above, parallelism comes from tree
traversals, and is therefore limited by the number
of nodes in the tree, low compared to the number of
particles. Additionally the amount of work per node
is not consistent in the adaptive algorithm,
depending as it does on the number of particles a
node contains (if a leaf), and the number and
quality of its neighbors. The very slow single-
thread performance of the MTA makes it
particularly susceptible to this kind of load
imbalance.

Figure 7: Improved strong scaling due to lowering the
maximum particles per leaf from 128 to eight.

We have found that one way to address both
problems at once is to adjust the maximum number
of particles per leaf. This is a runtime parameter to
the algorithm, allowing the following tradeoff: more
particles per leaf means a shallower tree, fewer
nodes, thus fewer interactions between nodes and
greater accuracy; fewer particles per leaf means a
deeper tree, more interactions between nodes, more
savings but less accuracy, and for our purposes,
more parallelism. An additional benefit is more
consistency in the work per box, since that work is
dependent on the particles in a box, and as the
maximum particles per box decreases the variance
in the number of particles per box also decreases.
Figure 7 demonstrates the improvement in scaled
performance that results from decreasing the
particles per leaf from 128 down to eight.

Finally, we describe a completely different
approach to parallelizing interaction computation
that is likely feasible only on the MTA: we move the
granularity of parallelism from the nodes
participating in the interactions down to the
interactions themselves.

In the original formulation of the adaptive FMM
algorithm, and in every implementation of it we
have seen, the interaction lists are parameterized
by the source node, that is, the node for which the
interactions are to be computed. This leads to a
straightforward computation partitioning strategy
for parallelizing interactions: divide nodes across
processors based on the total work as determined
by each node's list contents, then compute
interactions for the nodes in parallel. A major
advantage of this strategy is the absence of the
need to synchronize updates to the fields of a node
after each computation.

Figure 8: Improved strong scaling due to more fine-
grained parallelization of interaction computation.

We instead modify the list creation phase to
create a single global interaction list, and then
parallelize the loop that goes through the list. Each
thread computes a single interaction and then
executes a readfe/writeef combination to
atomically update the appropriate field. Figure 8
demonstrates the effectiveness of this approach.
Note that it enables significantly more parallelism
even when the number of particles per box is high.
It is unclear whether the drop in efficiency at high
processor counts is the result of contention or
residual load imbalance due to variance in the time
to compute interactions. Another question for
future exploration is whether we can similarly crack
open the computation in the upward and downward
passes.

4.4 Discrete Event Simulation
Discrete-event simulations (DES) are a special

class of computer systems simulation in which the

 - 10 -

ordering and timing of events is the main focus of
interest. These systems primarily focus on the
timing or time stamp of an activity, when it
commences or ceases within a system. For example,
in simulating computer networks to estimate
effective system capacity or queue sizes, the
important parameters may be the start time and
duration of job processing rather than details of the
signal transmission in the network. Thus, in such a
problem, it is not efficient to advance time in small
fixed time steps but to advance to the time of the
next event. Since events can occur at any time, the
time advances in non-uniform and can be either
very small or very large. Typical applications of the
discrete-event simulation systems include factory
layout and process planning, transport systems,
telecommunication networks and office
management systems.

The model development process in a DES
system begins with identifying the important events
that occur in a real system. Typically, the events
and their consequences that influence the progress
of a simulation are stored in a ‘list’ or a ‘queue’. The
simulation is progressed by working through the
time-stamped ‘event list’. These calculations are
inherently sequential and exhibit very low memory
locality. Optimization techniques such as look-
ahead and roll-back have been used to process the
events in the event list out-of-order. But the
overheads involved in implementing let alone
parallelizing these techniques are very large.

We have ported and optimized a simple DES
kernel onto the MTA-2 system. The kernel consists
of a priority queue implementation and two loops:
the first loop generates random events and inserts
them into the queue; the second removes events
from the queue in timestamp order.

A straightforward parallelization strategy for
the two loops simply serializes insertion and
removal from the queue via a lock is shown in
Figure 9:

However, this code performs extremely poorly on
the MTA, even on a single processor, due to the lack
of actual parallelism. Our goal for this initial
exploration was to attempt to improve the
performance of the kernel by taking advantage of
the extremely fine-grained synchronization
mechanisms offered by the MTA to enable
simultaneous insertions or removals from the
priority queue.

The priority queue implementation is binary
tree-based. Both insertion and removal operations
maintain the invariant that a parent is smaller
than both of its children -- thus the smallest
element is located at the root – and, moreover, do
so in O(log n) operations. The sequential operations
are implemented as follows:

• Insert: add the element as a leaf; move the

element up the tree, swapping with its
parent, until its timestamp is greater than
that of the parent.

• Remove: remove the root and replace it with

the last leaf; move the new root down the
tree, swapping with the smallest child, until
both children are larger.

Insertions can occur in parallel so long as 1)

each newly inserted element is given a unique slot,
and 2) the test for whether a swap is necessary
occurs atomically with the actual swap, which also
must be an atomic operation, so two threads do not
attempt to swap the same parent with different
children at the same time. We ensure the first
condition is met through the use of the
int_fetch_add()intrinsic procedure, which
atomically increments an integer variable, to find
the next available slot in the tree. We lock the
parent and child before checking, and potentially
swapping, to ensure the second condition holds.

Similarly, removals can occur in parallel so long
as 1) a unique leaf is found and moved to replace
the removed root, 2) the new root is not removed
prior to a necessary swap with one of its new
children, and 3) the tests for swaps, and the swaps,
occur atomically. Again, the int_fetch_add()
intrinsic enables us to meet the first condition,
while locks around the parent and each of its
children ensure the remaining two conditions hold.

For 1 to MAX_ELEMENTS in Parallel
 Create an event with a random timestamp
 Lock()
 Insert event in Priority Queue
 Unlock()

For 1 to MAX_ELEMENTS in Parallel
 Lock()
 Remove the event with minimum timestamp
 Unlock()

Figure 9: DES kernel using the priority queue method

 - 11 -

Figure 10: Performance of the parallelized insertion
(top) and removal (bottom) loops on a single processor.

To evaluate the effectiveness of our fine-
grained locking strategy on MTA hardware we
compare the running times of a kernel using our
improved insert and remove routines with a version
that serializes insertions and removals with a
coarse-grained lock.

Figure 10 compares performance of the two
implementations on a single processor as the
number of elements inserted and removed
increases. The fine-grained locking in the insertion
algorithm appears to allow hardware threads to
fully utilize the resources of the processor: the
speedup over the serial execution is nearly 40X.
The improvement for the removal algorithm, on the
other hand, tops out at 8X. While a significant
improvement, the lower factor suggests that
contention is preventing threads from fully utilizing
the resources available even on a single processor.

Figure 11, which demonstrates the
performance of multiple processors operating on a
fixed (256K) number of elements, confirms these
suspicions: while the insertion routine exhibits
near-perfect scaling as the number of processors
increases, the removal routine does not scale at all.

Figure 11: Multiprocessor scaling performance of the
insertion (top) and removal (bottom) loops. The number
of elements is fixed at 256K.

At this point we do not see any obvious means
of improving our locking strategy for removals.
Perhaps the best path forward is to determine
whether removal is actually on the critical path of a
more realistic discrete event simulation, and if so to
look into different data structures and/or
implementations of the priority queue.
Additionally, we still need to ensure that insertions
can occur simultaneously with removals under our
current locking strategy.

 - 12 -

5 Inferring Eldorado Performance
Because the MTA-2 is no longer a commercial

product, perhaps the most important question we
set out to answer with this work is: What do these
experiments on a 40-processor MTA-2 tell us about
the potential performance of our applications on
Eldorado?

A major change from the MTA-2 to the Eldorado
architecture is the move away from uniform memory
access latency. MTA-2 programmers are encouraged
not to be concerned with memory access locality, but
the extent to which such locality must be considered
on Eldorado is not yet known. One encouraging
observation is that the FMM algorithm provides a
great deal of locality that we have not exploited in
our current implementation. On the other hand,
the tree construction algorithm and the cracked
open interaction computation of our implementation
are both heavily dependent on low latency
synchronization provided by MTA-2. Similarly, our
discrete event simulation algorithms rely heavily on
the low-latency synchronization provided by the
MTA-2. It is yet not clear how these algorithms will
perform on Eldorado if the synchronization cost is
higher than that on the MTA-2, or if the
synchronization cost depends on the placement of
synchronized objects within the system’s memory.

6 Related Work
This research follows several earlier

investigations into the suitability of multithreading
(as implemented by the MTA-2 and its predecessor)
for scientific computing. Snavely et al [22]
investigated the performance of several kernels and
applications on a Tera MTA system, the
predecessor to the MTA-2. Oliker and Biswas [21]
considered the suitability of the MTA approach for
irregular, dynamic applications. Miyamoto and Lin
[19] considered SPMD programs written in the
Titanium programming language [23] on the MTA
platform. Our work complements this previous work
by examining applications and kernels from
problem domains that were not previously
considered, on a recent incarnation of the
architecture.

Henry et al [17] present an implementation and
preliminary performance results of a discrete-event
simulation kernel on the MTA. This particular
kernel is designed for modeling large-scale computer
networks. Performance results show that the
implementation is competitive with a single
processor system and scales only if the number of

timelines is large, i.e. the timelines are greater than
the number of streams available on the MTA
system.

Bokhari and Sauer [8] investigated dynamic
programming sequence alignment algorithms for
DNA sequences on the Cray MTA-2 system. Their
algorithms are reported to scale to up to eight MTA-
2 processors and the implementation relies
extensively on the use of full/empty bits in MTA-2
memory to facilitate parallel execution in the
dynamic programming algorithms. They do not
discuss performance comparisons with their
algorithm on other systems, or with other
algorithms.

7 Conclusions
General purpose platforms like the Cray

XT3 [1] successfully address a broad set of scientific
computing requirements. However, some important
types of algorithms, such as graph theoretic and
pointer-chasing algorithms, cause data access
patterns that do not map well to traditional cache-
based architectures. The MTA-2 uses an approach
that is strikingly different from this traditional
system architecture, an approach that can result in
extremely high utilization and excellent scalability
for these troublesome algorithms. In this report, we
have shown quantitatively that applications from
several areas, including molecular dynamics, fast
multipole methods, and discrete event simulations
can perform well on the MTA-2 architecture.

The MTA-2 was not a commercially successful
product for Cray. Nevertheless, because of the
Eldorado platform, the highly multi-threaded model
remains a viable option to support high
performance computing. When Eldorado systems
become available, we expect to perform a similar
evaluation to the one described in this report as
part of our continuing system evaluation efforts,
and anticipate an interesting and insightful
comparison of that new architecture’s performance
with the results presented in this report.

References
[1] S.R. Alam, R.F. Barrett et al., “Evaluation of the Cray

XT3 at ORNL: a status report,” Proc. Cray User Group
2006 Annual Technical Conference, 2006.

[2] G. Alverson, R. Alverson et al., “Exploiting
heterogeneous parallelism on a multithreaded
multiprocessor,” in Proceedings of the 6th international
conference on Supercomputing. Washington, D. C.,
United States: ACM Press, 1992

 - 13 -

[3] G. Alverson, P. Briggs et al., “Tera hardware-software
cooperation,” in Proceedings of the 1997 ACM/IEEE
conference on Supercomputing (CDROM). San Jose,
CA: ACM Press, 1997

[4] R. Alverson, D. Callahan et al., “The Tera computer
system,” in Proceedings of the 4th international
conference on Supercomputing. Amsterdam, The
Netherlands: ACM Press, 1990

[5] G.M. Amdahl, “Validity of the single processor approach
to achieving large scale computing capabilities,”
Computer Design, 6(12):39–40, 1967.

[6] D.H. Bailey, E. Barszcz et al., “The NAS Parallel
Benchmarks,” The International Journal of
Supercomputing Applications, 5(3):63-73, 1991.

[7] M.B. Blackmon, B. Boville et al., “The Community
Climate System Model,” BAMS, 82(11):2357–76, 2001.

[8] S. Bokhari and J. Sauer, “Sequence alignment on the
Cray MTA-2,” Concurrency and Computation: Practice
and Experience (Special issue on High Performance
Computational Biology), 16(9):823–39, 2004.

[9] P. Briggs, “Sparse matrix manipulation,” SIGPLAN Not.,
31(8):5-7, 1996.

[10] S. Brunett, J. Thornley, and M. Ellenbecker, “An initial
evaluation of the Tera Multithreaded Architecture and
programming system using the C3I parallel benchmark
suite,” in Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (CDROM). San Jose,
CA: IEEE Computer Society, 1998

[11] Cray Inc., “Cray MTA-2 Computer System User's
Guide,” Cray Inc. S-2317-10, 2005.

[12] Cray Inc., “Cray MTA-2 Programmer's Guide,” Cray
Inc. S-2320-10, 2005.

[13] Cray Inc., Cray MTA-2 System - HPC Technology
Initiatives,
http://www.cray.com/products/programs/mta_2/, 2006.

[14] J. Feo, D. Harper et al., “ELDORADO,” in 2nd
conference on Computing Frontiers. Ischia, Italy: ACM
Press, 2005

[15] L. Greengard and V. Rokhlin, “A fast algorithm for
particle simulations,” J. Comput. Physics, 73:325–48,
1987.

[16] J.L. Gustafson, “Reevaluating Amdahl's Law,”
Communications of the ACM, 31(5):532–3, 1988.

[17] R.R. Henry, S.H. Kahan et al., “An implementation of
the SSF Scalable Simulation Framework on the Cray
MTA,” Proc. 17th Workshop on Parallel and Distributed
Simulation (PADS'03), 2003, pp. 77–85.

[18] D.J. Kerbyson, H.J. Alme et al., “Predictive performance
and scalability modeling of a large-scale application,”
Proc. IEEE/ACM Conference on Supercomputing
(SC'01), 2001.

[19] C. Miyamoto and C. Lin, “Evaluating Titanium SPMD
programs on the Tera MTA,” in Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM).
Portland, Oregon, USA: ACM Press, 1999

[20] L. Oliker and R. Biswas, “Parallelization of a dynamic
unstructured application using three leading paradigms,”
in Proceedings of the 1999 ACM/IEEE conference on
Supercomputing (CDROM). Portland, Oregon, United
States: ACM Press, 1999

[21] L. Oliker and R. Biswas, “Multithreading for dynamic
irregular applications,” in First SIAM Conference on

Computational Science and Engineering. Washington,
D.C., USA, 2000

[22] A. Snavely, L. Carter et al., “Multi-processor
performance on the Tera MTA,” in Proceedings of the
1998 ACM/IEEE conference on Supercomputing
(CDROM). Orlando, Florida, USA: IEEE Computer
Society, 1998

[23] K. Yelick, L. Semenzato et al., “Titanium: a high-
performance Java dialect,” Concurrency: Practice and
Experience, 10(11–13):825–36, 1998.

